A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy
نویسندگان
چکیده
Raman sensing and microscopy are among the most specific optical technologies to identify the chemical compounds of unknown samples, and to enable label-free biomedical imaging. Here we present a method for stimulated Raman scattering spectroscopy and imaging with a time-encoded (TICO) Raman concept. We use continuous wave, rapidly wavelength-swept probe lasers and combine them with a short-duty-cycle actively modulated pump laser. Hence, we achieve high stimulated Raman gain signal levels, while still benefitting from the narrow linewidth and low noise of continuous wave operation. Our all-fibre TICO-Raman setup uses a Fourier domain mode-locked laser source to achieve a unique combination of high speed, broad spectral coverage (750-3,150 cm(-1)) and high resolution (0.5 cm(-1)). The Raman information is directly encoded and acquired in time. We demonstrate quantitative chemical analysis of a solvent mixture and hyperspectral Raman microscopy with molecular contrast of plant cells.
منابع مشابه
Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.
Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition ...
متن کاملBroadband stimulated Raman scattering with Fourier-transform detection.
We propose a new approach to broadband Stimulated Raman Scattering (SRS) spectroscopy and microscopy based on time-domain Fourier transform (FT) detection of the stimulated Raman gain (SRG) spectrum. We generate two phase-locked replicas of the Stokes pulse after the sample using a passive birefringent interferometer and measure by the FT technique both the Stokes and the SRG spectra. Our appro...
متن کاملStimulated Raman Scattering Microscopy with a Robust Fibre Laser Source.
Stimulated Raman Scattering microscopy allows label-free chemical imaging and has enabled exciting applications in biology, material science, and medicine. It provides a major advantage in imaging speed over spontaneous Raman scattering and has improved image contrast and spectral fidelity compared to coherent anti-Stokes Raman. Wider adoption of the technique has, however, been hindered by the...
متن کاملLabel-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy.
A finger on the pulse: Current molecular analysis of cells and tissues routinely relies on separation, enrichment, and subsequent measurements by various assays. Now, a platform of hyperspectral stimulated Raman scattering microscopy has been developed for the fast, quantitative, and label-free imaging of biomolecules in intact tissues using spectroscopic fingerprints as the contrast mechanism.
متن کاملQuantitative image analysis of broadband CARS microscopy hyperspectral images of polymer blends
We demonstrate that broadband coherent anti-Stokes Raman scattering (CARS) microscopy can be very useful for fast acquisition of quantitative chemical images of multilayer polymer blends. Since a raw CARS signal results from coherent interference of resonant Raman and nonresonant background, its intensity is not linearly proportional to the concentration of molecules of interest, and it is chal...
متن کامل